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Structured Abstract 

Objective 

The use and study of Opaque Ventilated Façades (OVF) has considerably expanded in recent 

years as an efficient envelope option when hoping to reduce cooling thermal loads for buildings. 

This is due to the solar protection provided by the outer layer and the ventilation from the air 

cavity. However, the actual situation in the air cavity of OVF buildings is usually very different 

from the theoretical studies, which do not consider the fixing systems of the outer layer regularly 

arranged inside the air cavity. This information is crucial to understand and validate predictions 

of the efficient behaviour of the system. Therefore, the objective of this work is to classify and 

analyse the performance of the air chamber in OVF existing buildings in Barcelona in 

accordance with current building regulations. 

 

Methodology 

Twenty-one buildings were surveyed and classified and the air movement and temperature 

inside the cavity was measured in ten buildings. 

 

Conclusions 

The findings show that although the Technical Building Code of Spain regulates the air cavity 

ventilation according opening minimums per linear meter, air inlet and outlet openings have the 

greatest influence on air cavity ventilation, even more so than open joint surface of the outer 
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layer. For these reason, we recommend considering all OVF system variables within building 

regulations since there are significant variations of heat transfer regarding the physical and 

geometric characteristics of their elements.  

 

Originality 

The originality of the study lies in the survey and characterization of O in real buildings, and the 

results obtained by on-site measurements. This study is aimed at designers and construction 

professionals interested in the efficient performance of ventilated façade systems. 

 

1. Introduction  

 

The building envelope acts as the principal energy moderator and is a key component for 

guaranteeing interior comfort conditions. Heat gains and losses through building façades have a 

significant influence on annual heating and cooling consumption. In this context, Opaque 

Ventilated Façades (OVF) are seen as an efficient envelope option nowadays, when compared 

to a conventional façade, due to reductions mainly in energy demands on buildings for cooling 

thermal loads in locations with high solar radiation. 

 

The OVF is a passive system formed by an opaque internal skin (heavy or light materials) and 

an outer layer. The inner skin acts as thermal and acoustic insulation and the outer layer 

consists of thin lightweight cladding panels. Between both layers, there is an air cavity that is 

drained and ventilated (Pardal March, 2009). In some cases, the joints of the panels are open 

and enable exterior air to enter and leave the cavity along the entire wall. In other cases, the 

external panel or the joints between tiles are closed and ventilation is only possible from 

openings at the top and bottom of the cavity. The growing industrialization and 

commercialization of these systems is based on improvements in thermal behavior from the 

natural ventilation of the air cavity. This results from continuous thermal insulation from the slab 

edges and from the protection provided by the external cladding from direct solar radiation. In 

order for this second point to be fully effective, it is necessary to insure ventilation of the cavity 

to avoid overheating.  

 

Inside the ventilated chamber, air flow is induced by natural convection due to temperature 

differences between the inner surfaces of the cavity and the external air. Natural ventilation can 

be driven by two phenomena: buoyancy and the wind. Wind driven ventilation is a consequence 

of the pressure difference in the façade surfaces produced by wind forces. Buoyancy-driven 

ventilation occurs as a result of the height of the cavity (Ibañez-Puy et al., 2017). Because of 

this, a large number of studies have focused on the specific phenomena that occur inside the 

cavity.  

 

The principal factors influencing the air moving inside the cavity are radiation and the outside 

wind. Regarding this, the results of an experimental study carried out in summer shows that a 

ventilated façade with higher ventilation channel and facing south has the best performance in 

terms of air velocity values and airflow rates (Stazi et al., 2011). Furthermore, an OVF´s 

thermofluid-dynamic analysis affirms that energy savings increases if the solar radiation is 

higher: during the summer, the ventilated façade can create energy savings rates above 40% 

when compared to the same unventilated façade (Patania et al., 2010). Whit respect to the 
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winter season, the study of the OVF in different climate zones in Spain shows that although the 

most influential weather variable is solar radiation, a combination of high temperatures and low 

wind speeds can also lead to important energy saving values (Peci Lopez et al., 2015). 

However, a large number of studies (Lorente, 2002; Balocco, 2002; Manz, 2003; Xamán et al., 

2005; Sanjuan et al., 2011a; Sánchez et al., 2013) do not address the effects of the wind 

because they were developed for steady state conditions even though it is a fundamental 

aspect regarding the air moving inside the cavity.  

 

Regardless, most of the journal papers relating to the success of the overall performance of a 

building with OVF agree that a previous detailed analysis of the context is important. (Ibañez-

Puy et al., 2017; Elarga et al., 2015; Aparicio et al., 2014; Sanjuan et al., 2011b). The local 

climate, the specific design, the physical characteristics of the construction (inlet/outlet 

locations, cavity thickness, material properties, air source), the use and desired comfort of the 

building, as well as the cost of primary energy and CO2 emission should all be taken into 

account. In order to study the OVF, the studies vary according to the methodology adopted: 

thermofluid-dynamic analyses, (Patania et al., 2010; Domínguez Delgado et al., 2013; Suárez et 

al., 2015) number simulations, (Balocco, 2002; 2004) and, in some cases, experimental models 

have been created (Sandberg & Moshfegh, 1996; Peci López et al., 2012; Sánchez et al., 

2017). There are few analyses of real cases in actual operation (Stazi et al., 2011; Aparicio et 

al., 2014).  

 

Nevertheless, a crucial point in understanding and validating how the OVF system behaves is 

by considering the actual dimensions of the air cavity. Often, theoretical studies do not consider 

the internal structures of the outer layer, which are horizontal or vertical elements that are 

regularly arranged inside the cavity and may interfere with air movement. In order to give a 

definitive criterion of the OVF energy performance, it is necessary to evaluate the specific 

façade geometry and materiality by taking into account building costs and the price of the 

energy used for heating and cooling.  

 

Within the framework of a micro-sustainability level, the building envelope largely depends on 

the policies established in building codes: Yu et al. (2017) state that building energy codes can 

generate significant energy and economic savings by 2050. Some studies have advanced in the 

analysis of possible building and urban rehabilitations in relation to the Spanish Building Code 

(Daumal Domènech et al., 2013; Cocco & Alonso, 2015). In this regard, building regulations 

should guide the specific conditions of a ventilated façade making it suitable to the urban 

context and the climate zone. The advancement and growth in the construction industry of 

these enclosure systems indicates the need for studying OVF behavior in relation to building 

regulations. The Technical Building Code of Spain (Código Técnico de la Edificación) classifies 

air cavities by the degree of ventilation. For this reason, the present paper focuses on the 

effectiveness of the ventilation from OVF cavities in real buildings in relation to the building 

regulations in Spain. The value of this study lies in the survey and characterization of the make-

up of more than 20 ventilated façades as they are constructed in the Barcelona area, and the 

results obtained by on-site measurements: air velocity and temperature inside the air cavity.  

1.1. Considerations for air cavity ventilation regulation 

The first legal account referring to OVF cavity ventilation dates from 1979. Basic Building 

Regulations (NBE-CT-79) were oriented to achieve energy savings through the proper 
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construction of buildings, addressing the problems arising from the increased energy cost, as 

well as the thermal aspects that affect buildings and their habitability conditions (Boletín Oficial 

del Estado, 1979). The NBE-CT-79 articulated the thermal conditions of buildings and 

established a classification for vertical enclosures with ventilated air cavities. This was done by 

relating the total section of the ventilation opening S (cm
2
) and the length of the enclosure L (m). 

Three types were established:  

- Weakly ventilated air chamber: S/L < 20cm
2
/m 

- Moderately ventilated air chamber: 20 ≤ S/L < 500 cm
2
/m 

- Highly ventilated air chamber: S/L ≥ 500cm
2
/m 

The NBE-CT-79 was repealed with the advent of the Technical Building Code (Código Técnico 

de la Edificación) in 2006, in which the criteria of energy saving in the building were maintained 

through specific sections. However, neither of them specifically included the OVF in the basic 

documents. Therefore the CTE requires the approval of certified documentation that guarantees 

the beneficial performance for any alternative solution proposed (brick, concrete or natural 

stone) for the façade. The European Technical Assessment (ETA) is a document that provides 

information about the performance of a construction product and a description of its essential 

characteristics. This assessment is located in the new Construction Products Regulation (EU) 

No.305/2011 which went into law in 2013 in all European Members States and in the European 

Economic Area (European Technical Assessment, 2013).  

 

On the other hand, the Basic Health Document (Documento Básico de Salubridad) and the 

Energy Saving Document (Documento Básico de Ahorro de Energía) are documents of the CTE 

that refer to the classification of the air cavity by the degree of ventilation. However, each 

classifies in a different way:  

 

The Basic Health Document (DB-HS) defines a ventilated chamber as "the separation space in 

the construction section of a façade or a roof that allows the diffusion of the water vapour 

through exterior openings arranged in such a way that ensures cross ventilation". The document 

defines minimum required degrees of impermeability against the penetration of rainfall in the 

façades, and it refers to medium, high and very high filtration resistance barriers to the air 

cavity. A ventilated air cavity is only required when a very high resistance barrier for filtration is 

required (Barcelona meets the medium and high filtration resistance barrier requirements). In 

these cases, the following considerations for the cavity have been established:  

- The cavity must be arranged on the outer side of the inner wall insulation; 

- A system for collecting and evacuating filtered water should be provided at the bottom of the 

chamber and for when it is interrupted; 

- The thickness of the cavity must be between 3 and 10 cm; 

- Ventilation openings must be provided with a minimum effective area of 120cm
2
 for each 

10m
2
 of façade between floors distributed at 50% between the top and bottom. The openings 

may be accompanied by: gratings, open joints in discontinuous coatings having a width 

greater than 5mm or other another barrier that produces the same effect. 

The Energy Saving Document (DB-HE-1) defines the characteristics of façade parameters 

concerning calculations of transmittance and resistance of the enclosures in relation to the 

outside air. According to the code, the air cavities are characterized through their thermal 

resistance. Therefore, there is a distinction between a slightly ventilated and a highly ventilated 
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air cavity.  The differences between one and the other is the joint surface value of 1,500mm² per 

ml counted horizontally for vertical cavities. The following typologies are defined: 

a) Non-ventilated air cavity: without any specific air flow system; an air cavity without 

insulation from the outside environment.  However, small openings to the outside may 

also be considered as “non-ventilated” if those openings do not allow air flow through 

the chamber and do not exceed 500mm
2
 per m of length when counted horizontally for 

vertical air cavities. 

b) Lightly ventilated air cavity: one without a device limiting air flow from the outside 

environment and with openings within the following range: 500mm
2
 <S openings ≤ 

1500mm
2
 per m length 

c) Highly ventilated air cavity: one in which aperture values exceed 1500mm
2
 per m in 

length counted horizontally for vertical air cavities. 

Regarding ventilation opening minimums, according to a study carried out at the Construction 

Technology Institute of Catalonia (ITeC), the European Technical Assessment (DITE 034) gives 

5000mm
2
 per linear meter as the most restrictive value for openings at the bottom and top of the 

façade, compared to the 1500mm
2
/m indicated in the DB-HE (Bento Fernández, 2014). 

 

Furthermore, the limit values and the thermal insulation verification method indicated in the DB-

HE-1 are applicable to the inner skin; but, these results may be undesirable if the outer layer is 

not considered. Certain adaptations to calculation programs would be required to include their 

data because steady state calculations only take into account the temperatures of the coldest 

month of the year.  Therefore, heat gains in the air chamber in hot periods are neglected (Ferrer 

Gispert et al., 2014).  

 

Additionally, thermal resistances of non-ventilated and lightly ventilated air cavities are defined 

according to thickness. In these cases, no layer of the enclosure is neglected and the 

transmittance of the cavity is considered from tabulated and simplified values. In order to 

perform the calculation of the temperature inside the chamber, the external convection 

coefficient is modified by simplifying the calculation and making it unrealistic (Aparicio 

Fernández, 2010). However, for highly ventilated air cavities, the total thermal resistance of the 

enclosure is obtained by disregarding the thermal resistance of the air cavity and those of the 

other layers between the air cavity and the outside environment.  This includes an outer surface 

resistance (corresponding to the calm air) which equals to the inner surface resistance. In 

addition, the coefficient of external convection equals the interior and does not contemplate the 

heating produced by the solar gains inside the cavity.  

 

Regarding transmittance, the CTE assigns average limit values to the enclosures of buildings 

which vary according to their location in Spain. These values depend on the coefficient of 

thermal conductivity of each material, the surface resistances and the resistance of the cavity of 

enclosures concerning sealed or unsealed cavities. However, when the cavity is ventilated the 

calculation of the transmittance thickness is more complex. In these cases, there is heat 

transfer due to different heat exchanges: by convection and radiation between the outside 

environment and the outer sheet, which includes solar radiation; by radiation between the two 

walls of the cavity; by convection between the walls of the cavity and the mass of air circulating; 

by conduction through the walls, etc. All these conditions vary greatly since they depend on the 
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particularity of each project.  Dissimilarities include the materials of the inner and outer sheets, 

the dimensions and geometry of the joints, the width of the cavity and the inside structure. 

 

2. Material and methods 

This study was done in two stages: first, twenty-one OVF buildings were identified and classified 

according to their actual building characteristics. Second, air movement and temperature were 

measured inside the air cavity in ten buildings.  

2.1. Choice of the cases studies 

Twenty-one buildings with Opaque Ventilated Façade were identified. Only buildings with more 

than 6 stories (18m) were considered in this study. One file per case was made. Each one 

includes location, orientation, use of the building, as well as the construction details of the 

enclosure system and the definition of the dimensional variables of the ventilated cavity. This 

information was obtained from in site surveys of the buildings, and from a request for 

construction details from the original sources: architects, designers, construction companies 

and companies that market the studied system.   

2.2. Construction variables  

The main variables to be studied were defined: the opening inlet and outlet of the air cavity, 

open joint surface of the outer layer, and width and height of the cavity. Table 1 and Figure 1 

show the description and nomenclatures used.  

Table 1. Characterization of the OVF system variables 

Ventilation 

variables (air 

circulation 

channels)  

Description  Elements   Nomenclature 

Top and bottom inlet 

and outlet  

Openings at the bottom and top 

of the cavity (linear meters) 

Inlet opening (bottom) lo 

Outlet opening (top)  Oo 

Joints between the 

panels of the outer 

layer 

Vertical and/or horizontal open 

joints (linear metres) / Open 

joint surface of the outer layer  

(1m
2
 façade) 

Vertical joints opening Vj 

Horizontal joints opening Hj 

Open joint surface in 1m
2
 façade Soj 

Cavity between 

layers 

Width and height of the cavity 

(linear metres) 

Width between the inner face of the outer 

layer and the outer face of the inner layer 

(insulation) 

W 

Width of the real cavity (Chimney stack) w 

Height of the cavity H 

Source: Own elaboration  

 

  



 

 

 

217 
 | AIR CAVITY PERFORMANCE IN OPAQUE VENTILATED FAÇADES IN ACCORDANCE ACE© AÑO 13, núm. 39, FEBRERO 2019

WITH THE SPANISH TECHNICAL BUILDING CODE 

   Julieta Balter, Cristina Pardal, Ignacio Paricio, Carolina Ganem 

Figure 1. Dimensional variables of the OVF system 

 

Source: Own elaboration 

2.3. Classification of the ventilated cavity  

This classification was made concerning the air inlet and outlet variables (Table 2).  

Table 2. Classification of the ventilated cavity types according to the top and bottom 

solution 

   

Closed Cavity 
Façades with NO air inlet and outlet neither in the 

bottom nor in the top 

CC 

Semi-Open Cavity 
Façades with only one opening: either the bottom 

or the top of the cavity is closed 

SC 

Open Cavity 
Façades with open air inlet and outlet in the 

bottom and in the top of the cavity 

OC 

Source: Own elaboration 

Figure 2 shows the buildings selected according to the cavity classification. As it can be seen, 

fifteen of the twenty-one study cases (70%) have both ends of the cavity (lower and upper) 

closed with watertight plates. Of the remaining six buildings, only two have open air inlet and 

outlet, and four cases have one open end. 
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Figure 2. Case studies classified according to the type of ventilated cavity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration 

2.4. Diagnosis of existing cases under real conditions 

Measurements were made in the summer -August and September- on clear sky days. The 

selection of the measured buildings was made according to the access possibilities and to the 

characteristics of the building. The cases without continuous thermal insulation ahead the slab 

edges (CC7 and OC1) were discarded. Table 3 shows the dimensions of the defined variables, 

and Table 4 shows the materiality of the inner and outer skin façade of each building studied.   

 

Table 3. Ventilation variables of each building under study 

  

VENTILATION VARIABLES  

Air Inlet and Outlet  Open Joints Cavity (m) 

ai (m) ao (m)  Vj (mm) Hj (mm) Soj (m
2
) W w  H  

CC1* - - - 8 0.018 0.07 0.07 12.5 

CC2* - - 6 8 0.015 0.03 0.03 12 

CC3* - - - 10 0.012 0.07 0.07 22 
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CC4* - - 6 - 0.009 0.08 0.02 20 

CC5* - - 6 6 0.009 0.12 0.07 2.7 

CC6* - - 6 - 0.003 0.027 - 2.7 

CC7 - - - - - 0.05 0.05 12 

CC8 - - - - - 0.07 0.07 23 

CC9 - - - 8 0.013 0.05 0.05 16.5 

CC10 - - - 6 0.011 0.05 0.05 18 

CC11 - - 6 - 0.01 0.03 0.02 2.7 

CC12 - - 3 - 0.009 0.06 0.048 15 

CC13 - - 4 - 0.005 0.087 0.06 18 

CC14 - - 4 - 0.005 0.087 0.06 15 

CC15 - - 6 - - 0.09 0.05 12 

SC1* - 0.02 10 - 0.006 0.1 0.1 2.9 

SC2 - 0.02 - 8 0.014 0.085 0.058 2.7 

SC3* 0.07 - 6 - 0.005 0.07 0.03 12 

SC4* 0.05 - - - - 0.09 0.06 12 

OC1 0.02 0.02 - 8 0.013 0.02 0.02 18 

OC2* 0.04 0.03 - - - 0.07 0.07 15 

Source: Own elaboration  

Table 4. Materiality variables of each building under study 

  
MATERIALITY VARIABLES  

Outer skin Thermal Insulation Inner skin  

CC1* Gres  (0.6 x 0.6m) Projected polyurethane (0.06m) Concret blocks  

CC2* Travertine (1.3 x 0.7m) Extruded polystyrene (0.03m)  Brick 

CC3* Ceramic  (0.25 x 0.75m) Projected polyurethane (0.06m)  Brick 

CC4* Ceramic (0.6 x 0.3m) Rockwool (0.03m)   Brick  

CC5* Phenolic resin (2.3 x 0.8 m) Rockwool (0.04m) 
Gypsum board and rockwool 
sandwich  

CC6* Asbestos Cement (1.2 x 2.7m) Rockwool (0.06m)  Brick 

CC7 Travertine (0.75 x 0.5m)  -  Brick 

CC8 Solid aluminium (0.9 x 0.90m) 
Rigid insulation on 
impermeable membrane 

 Ceramic brick  

CC9 Asbestos Cement (1.2 x 0.5m) Rockwool (0.04m) 
Reinforced concrete panels and 
rockwool sandwich 

CC10 Natural Stone (0.45 x 0.7m) Rockwool (0.03m) 
Fiberglass panel and rockwool 
sandwich 

CC11 Natural Stone (1 x 0.5m) Rockwool (0.05m) Brick 

CC12 Concrete polymer (0.3 x 0.2m)  Fiberglass wool (0.1m) Concret and bricks  

CC13 Natural Stone (0.7 x 0.45m) Rockwool (0.06m)  Brick 

CC14 Natural Stone (0.7 x 0.45m) Rockwool (0.06m)  Brick 
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CC15 Asbestos Cement (0.3 x 1.4m) Rockwool (0.04m)  Brick 

SC1* Phenolic resin (1.8 x 1m) Rockwool (0.04m) 
Gypsum board and rockwool 
sandwich 

SC2 Ceramic (0.9 x 0.25m) Rockwool (0.10m)  Cement board (Knauf) 

SC3* Phenolic resin (1 x 0.7m) Projected polyurethane (0.03m)  Brick 

SC4* Phenolic resin (0.6 x 1.1m) Projected polyurethane (0.03m)  Brick 

OC1 Travertine (0.8 x 0.6m)  -  Brick 

OC2* Phenolic resin (0.9 x 1.6m) Projected polyurethane (0.03m)  Brick 

 

Source: Own elaboration  

 

A Testo 405i thermal anemometer was used with a 400mm extendible telescope, operated 

through a smart phone. The equipment registers the air speed (hot wire sensor with a 

measuring range 0 to 30m/s and resolution 0.01m/s) and air temperature every two seconds 

(NTC temperature sensor with a measuring range -20 to 60°C and resolution 0.1°C). In some 

cases, the extendible telescope was introduced through the open joints of the outer layer.  

 

In other cases, one plate was removed and replaced to install the anemometer inside the air 

cavity (see Figure 3). In all cases, the provision was made for the hot wire sensor to be 

perpendicular to the vertical airflow inside the cavity. The methodology consisted in monitoring 

the cases in periods of 30 minutes in the morning and 30 minutes in the afternoon. The data 

were recorded in the following sequence: 5 minutes outside, 20 minutes inside the cavity and 5 

minutes outside. 

 

Figure 3. Images of the measurements made in case studies 
 

 
 

Source: Own elaboration 

 

Different façade orientations were evaluated: four buildings façades with North-West orientation 

(CC2, CC4, CC6 and OC2), three building façades with North-East orientation (SC1, SC3 and 

SC4) and four building façades with South-West orientation (CC1, CC3, CC5 and SC3). The 

measurements were performed at heights of 0.8 to 2.1m in all cases.  

 

Additionally, in cases SC3 and OC2 it was possible to monitor the highest point of the cavity, at 

12 and 15m respectively. Table 5 shows the triple entry box of measured cases according to 

orientation and height monitored: low (L) and high (H) height. 
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Table 5. Measured cases according to orientation and height monitored 

   CC1 CC2 CC3 CC4 CC5 CC6 SC1 SC3 SC4 OC2 

North-
West 

                                        

North-East                                         

South-
West  

                                        

Height L H L H L H L H L H L H L H L H L H L H 

Source: Own elaboration 

 

3. Results and Discussion 

3.1. Air movement and temperature in the wall cavity  

The measurements of ten of the characterized buildings (marked with an asterisk in Figure 2 

and Tables 3 and 4) are shown in Figures 4 to 7. The thermal and air velocity results are 

presented in all cases during the measured time of highest solar radiation: during the evening, 

for cases facing westward and during the morning in cases facing eastward. The measurements 

that were performed at Close Cavity (height 0.8 to 2.1m) are represented in Figure 4; at Semi 

Open Cavity at a height of 0.8 to 2.1m in Figure 5; at Semi Open Cavity at a height of 12m in 

Figure 6 and the measurements performed at Open Cavity at 1m and 15m are represented in 

Figure 7.  

 

The results showed that temperatures increased and the air velocity decreased significantly 

inside the cavity when compared to exterior conditions. Relative to the air velocity at the lowest 

heights, for the close cavity cases (Figure 4) the interior air flow reduced when compared to the 

exterior in ranges of percentage from 62% (CC5) to 100% (CC6). Cases CC1, CC2, CC3 and 

CC4 reduced 85%, 82%, 94% and 92% respectively.  

 

The smallest reduction was for case CC5 because it is the only one that has the outer layer with 

both -vertical and horizontal- open joints. For the semi-open cavity (Figure 5), the reductions 

were 62% in case SC1, and ranged from 14% to 26% in SC3 (South and North face 

respectively). The largest reduction was for case SC1. That is because it is the only measured 

case with a closed air inlet (the height of the measurements was at 0.8m). Finally, in the open 

cavity case (Figure 7), the air velocity inside the cavity fell 19%.  

 

In the highest point of the cavity, the interior air velocities showed significant reductions with 

respect to the exterior. In the open cavity (Figure 7), the decrease was 53%. This is due to the 

northern orientation and that during the measurement the façade did not receive solar radiation. 

In the semi-closed cavity, (Figure 6) air velocity decreases were 72% and 86% for the southern 

and northern orientations respectively. These high values are explained because the air outlet 

of the cavity is closed. 

 

The higher air velocities in the wall cavities evaluated are explained in two ways. First, the air 

inlet and outlet openings have a significant influence on the movement of air in the cavity: the 
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mean air velocity in the CC cases was 0.13m/s, while in the cases SC and OC the average 

velocity was 0.35m/s. On the other hand, the orientations with greater solar incidence on their 

façades also influence air movement.  The air velocity was higher in the buildings facing south-

west than those to the north-east and north-west with mean differences of 0.04m/s in the case 

of closed cavities and 0.45m/s in semi-closed cavities. In conclusion, the two key factors 

influencing the proper behaviour of the ventilated cavity are: the area of the inlet and outlet 

openings and the solar incidence of the façade.  

 

These results are in agreement with those obtained by thermofluid-dynamic analyses from 

computer simulations of the ventilated façade (Patania et al., 2010). These indicate that energy 

savings increase when solar radiation increases. The increase of inlet air velocity causes a 

reduction of air temperature inside the duct which also increases the energy savings rate. For 

this reason, the OVF is recommended for high radiation zones.  

 

There are always heat gains inside the air cavity: air temperatures tended to be higher than 

outside. Mean increments of 5.4°C were registered in the SC3-Southwest orientation case. This 

result is coincident with reported measurements of existing buildings where the average indoor-

outdoor temperature differences in summer were 7°C for the southern orientation (Aparicio 

Fernández, 2010).  

 

However, only one case (CC2 of travertine stone) showed temperatures inside the cavity lower 

than in the exterior of the total of cases monitored in this study: this case has the lowest 

coefficient of conductivity in its outer layer. This indicates that temperature increase in the 

chamber is associated with the thermo-physical characteristics of the outer façade. This is in 

agreement with the results of the work of Patania et al. (2010) where it is concluded that the 

energy performance of the OVF improves when the external layer has low thermal conductivity 

values, high density values, high specific heat values, and low thermal diffusivity values.  

 

Air velocities inside the cavity are related to increases in temperature inside the cavity for the 

closed and semi closed cavity cases: average air velocity of 0.23m/s with mean differences of 

4.6°C in CC1 and average air velocity of 0.68m/s with mean differences of 5°C in SC3. In other 

words, more air movement does not necessarily contribute to a decrease in temperature inside 

the cavity.  
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Figure 4.  Thermal and air velocity results in Closed Cavity cases (0.8 to 1.2m height)  

during the measured time at highest solar radiation 
 

 
Source: Own elaboration 

 

 

Avg: 0.09m/s 

Avg: 30.65°C  
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Figure 5. Thermal and air velocity results for Semi-Open Cavity cases (0.8 to 1.2m height) 

during the measured time of highest solar radiation 
 

 
 

Source: Own elaboration 

 

Figure 6. Thermal and air velocity results in Semi-Closed cases at the top of the cavity 

(12m) during the measured time of highest solar radiation 
 

 
Source: Own elaboration 
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Figure 7.  Thermal and air velocity results for Open Cavity cases during the measured 

time of highest solar radiation 
 

 
Source: Own elaboration 

3.2. Air movement inside the cavity with regard to the open area regulated in 

the Spanish Technical Building Code  

The results of the mean velocities inside the cavities in relation to the percentage of open joint 

surface of all the study cases are presented. As is seen in Section 2, the Spanish Technical 

Building Code refers to the classification of air cavities according to the degree of ventilation. 

According to the Basic Health Document for a ventilating cavity, openings must be at least 

0.0012m²/m². However, this surface must be at least 0.0015m²/m² for the cavity to be highly 

ventilated according to the Energy Saving Document.   

 

In Table 3, it can be seen that the joint surface of the outer layer exceeds the regulated 

minimum value considerably for both health and energy purposes in all the cases under study. 

However, the greatest ventilation of the cavity occurs in cases with open ends (SC3 and OC2) 

and not in the case with the highest open joint surface (CC1). 

 

For buildings with an orientation facing North-West (Figure 8), the highest average air velocity 

was 0.37m/s in the open cavity case (OC2), which has an air inlet opening of 4cm and an outlet 

opening of 3cm. In this case, one can deduce that the air movement would be higher if the outer 

layer had open joints.  There was no air movement (air velocity average of 0m/s) inside the gap 

for closed cavity cases (case CC6).  

 

This is because it is the only case in which the horizontal internal structure causes a null with 

the width (w) of the cavity. In addition, the Width (W) is only 3cm and has a discontinuous height 

(H=2.7m) due to strangulations in slabs (see Table 3). In cases CC2 and CC4, the mean air 

velocities in the evening were 0.17m/s and 0.15m/s. These are cases in which the widths (w) of 

the cavities are 3cm and 2cm, respectively, and the height of the cavity is continuous along the 

total height of the building. 
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Figure 8.  Relation between Open joint Surface (%) and Air velocity (m/s) in North-West 

Facing OVF  

 
Source: Own elaboration 

 

For the buildings facing North-East (Figure 9), all the evaluated cases correspond to the semi-

closed cavity characterization. The highest average air velocity was 0.31m/s for the SC3 case. 

This is due to the largest air inlet opening dimension (7cm) of the buildings. Also, the width of 

the cavity is 3cm and the height of the cavity is continuous along the building (H=12m). As for 

the SC1 case, the average air velocity was 0.29m/s. This building has the largest open joint 

area (0.006m
2
) of the North-East cases, a 10cm wide cavity, but with closed air entrance and 

the smallest air outlet opening (2cm).  Also, it is a discontinuous cavity due to strangulation in 

slabs (H=2.9m). Finally, in the case of SC4, the average air velocity was 0.19m/s without open 

joints in the outer layer but with an air inlet opening of 5cm and a 6cm cavity width (w) and a 

continuous cavity height (H=12m). 

Figure 9. Relation between Open joint Surface (%) and Air velocity (m/s) in North-East 

Facing OVF 

 
Source: Own elaboration 
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For buildings facing South-West (Figure 10), three closed cavity cases and one semi-open 

cavity case were monitored. The last one in the list, (SC3), had the highest air velocities at an 

average of 0.68m/s despite being the one with the lowest open joint surface. This is due to 

features already mentioned about air inlet openings and a continuous height of the cavity. As for 

the three closed cavity cases, they have a cavity width (w) of 7cm. CC1 presented the highest 

velocities, an average of 0.23m/s, because it has the largest open joint surface and a 

continuous height of the cavity (H=12m). The CC3 and CC5 cases presented similar mean 

velocities of 0.16m/s. 

Figure 10. Relation between Open joint Surface (%) and Air velocity 

(m/s) in South-West Facing OVF 

 
Source: Own elaboration 

On the other hand, it can be observed that the average velocities of the total cases evaluated 

were higher during greater incidence of solar radiation on the façades according to the 

orientation and the time period (morning and afternoon).  

 

The North-West and South-West cases recorded higher velocities in the afternoon (0.7m/s and 

1.12m/s respectively) and the North-East cases recorded higher velocities in the morning 

(1.1m/s). This indicates that solar radiation is an important variable for increasing air movement 

in the OVF cavity. 

 

Figure 11 shows the linear relationships of open joint surface increases in relation to air velocity 

in all the cases under study. This relationship is more evident in cases with a closed cavity in 

the afternoon and in cases with a semi-open cavity in the morning because of the higher 

incidence of solar radiation on the façades: CC cases that are oriented to the West (South-West 

and North-West) and SC cases that are oriented to the East (North-East).  

 

Likewise, buildings with apertures at each end of the cavity are those with the highest velocities 

inside. For this reason, it is possible to demonstrate how influential the apertures of the cavity 

are for the desired performance of the VF. 
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Figure 11. Relation between Open joint Surface (%) and Air velocity (m/s) in all cases  

 

 

 

 

 

 

 

 

 

 

 
 

Source: Own elaboration 

 

4. Conclusions  

The present paper focuses on the study of the effectiveness of OVF air cavity ventilation 

regarding the considerations laid out by the Technical Building Code of Spain (CTE). Following 

these guidelines, environmental field measurements and geometric and materiality analyses 

were made for real buildings.  

 

The findings show that air inlet and outlet openings have a major influence on air cavity 

ventilation, even more so than the open joint surface of the outer layer. Most academic 

thermofluid-dynamic computer studies of air cavity performance consider these openings but 

can differ from real on-site measurements. The CTE supports air cavity ventilation through 

cladding panel open joints and all the buildings under study achieve more than enough this 

minimum surface. The results show that as the percentage of open joint area increases, the air 

velocity in the wall cavity also increases (mean of 0.09m/s). However, this velocity increase is 

not significant in relation to the cases with inlet and/or outlet openings (mean of 0.23m/s). 

 

Regarding the values given by the CTE´s Basic Health and the Energy Saving Document, 

ventilation openings must be provided with a minimum effective area of 0.0012m
2
/m

2
 and 

0.0015m
2
/m

2
, respectively. The buildings surveyed showed that the outer layer´s open joint 

surface exceed these values by between 50% and 90%. 

 

The thermal results of the cases under study indicate that the air inside the wall cavity 

overheats considerably, especially during the hours of greater solar incidence. This overheating 

is necessary for the convection effect. However, the CTE does not contemplate temperature 

calculations inside the air cavity. This is an important factor to consider given the significant 

solar gains in hot and temperate climates. The excessive temperature rise in the air cavity may 

lead to a bad performance of the façade resulting in unforeseen condensation or heat gains on 

the inner layer. 
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Related to the OVF construction materials and envelope components, the present study shows 

that although the companies that commercialize the system recommend the existence of 

openings at the bottom and top of the cavity, it seems that it is more laborious and costly to truly 

take advantage of this solution in actual buildings.  

 

The approach outlined in this study delves into two guidelines: on the one hand, measurements 

should be planned at different heights of the air cavity; and, on the other hand, it is necessary to 

advance the study of the thermo-dynamic phenomena that happen within the air cavity in order 

to generate application proposals for building regulations that want to incorporate the OVF 

envelope system in different geographic and climatic contexts. If building regulations include the 

OVF system, all system variables should be considered since there are big variations in heat 

transfer according the physical and geometric characteristics of the elements.    
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