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Abstract 

 

The Local Climate Zone (LCZ) classification scheme, introduced by Stewart and Oke (2012), offers promising 

opportunities for better studying the urban climate phenomena at the micro- and local scale (e.g. the urban heat island 

effect). However, although several methods have been introduced to apply the concept of LCZs to cities, only few utilize 

publicly available data, like, for instance, the World Urban Database and Access Portal Tools (WUDAPT). However, to 

date, results are relatively rough, and frequent quality assessments demonstrate moderate overall accuracy. This paper 

proposes an approach for improving the quality of LCZ automatic classification, combining freely available multispectral 

satellite imagery together with morphological features of the urban environment. An overall accuracy of 67% was 

achieved for the Metropolitan City of Milan with an improvement of 12% with respect to using only Landsat 8 

multispectral and thermal data. This ascertains the physic-morphological nature of the LCZs and opens the possibility 

for mapping more accurate LCZs without the need for additional thermal information. 
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1. Introduction  

 

Climate change is among the top global environmental concerns in the recent years. In urban 

areas, extreme heatwaves and the urban heat island (UHI) effect are clear manifestations of 

such a concern, with serious implications on human comfort and health, energy demand, and 

the resilience of cities in general. The concept of Local Climate Zones (LCZs), firstly introduced 

by Stewart and Oke (2012) and defined as “regions of uniform surface cover, structure, 

material, and human activity that span hundreds of meters to several kilometers in horizontal 

scale” (p. 1884), opens promising opportunities for better assessing the UHI phenomenon at the 

micro- and local scale, rather than relying only on the classical urban–rural classification. In 

particular, the LCZ classification scheme relates the physical and morphological features of the 

urban environment to micro- and local climate conditions.  

 

Several methods have been introduced to apply the concept of LCZs to cities. These vary 

between in-situ measurements, to record relevant geometric and surface cover parameters; 

manual sampling based on user’s knowledge and experience; and GIS or remote sensing-

based methods (Ren et al., 2016; Wang, Ren, Xu, Lau, & Shi, 2018). For instance, the World 

Urban Database and Access Portal Tools (WUDAPT), introduced by Mills et al. (2015), is 

among the most ambitious initiatives to build a worldwide urban climate database and generate 
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effective, automatic, remote sensing-based classifications of LCZs based on publicly available 

satellite data. In particular, the WUDAPT project presents three level products of urban climate 

data: level 0, at regional and city scale; level 1, at neighborhood scale; and level 2, at building 

scale (Mills et al., 2015). In WUDAPT level 0 product, each LCZ is described and classified 

depending on the characteristics of some key urban parameters consistent with different urban 

micro- and local climates (e.g. surface cover, materials, building geometry). This is done by 

conducting a supervised classification, using freely available multispectral and thermal satellite 

imagery and training samples, defined through very high-resolution (VHR) aerial or satellite 

imagery. However, although, results provide a multi-categorical, comprehensive classification, 

LCZ maps are relatively rough (Ren et al., 2016) and frequent quality assessments demonstrate 

moderate overall accuracy, i.e. 50 to 60% (Bechtel et al., 2019). Besides, only few freely 

available satellite data have thermal information.  

 

In this paper, our goal is to investigate the possibility of improving the quality of LCZ maps both 

in terms of spatial resolution and accuracy. Firstly, by using fine spatial resolution input data, to 

conduct the pixel-based classification; moreover, digitizing relatively small-sized training 

samples, to consider some small-scale urban units (Table 1), that can influence upon the micro- 

and local climate (Oke, Mills, Christen, & Voogt, 2017). Secondly, by combining physical 

features, retrieved by means of multispectral satellite imagery, together with morphological 

features of the urban environment. In particular, we include surface albedo (both narrow and 

broadband albedo), Normalized Difference Vegetation Index (NDVI), building heights, and Sky 

View Factor (SVF) as main variables. 

 

Table 1. The hierarchy of urban units and their urban climate phenomena 
  

Source: (Oke et al., 2017, p. 19) 

 

2. Data and study area 

 

Although the concept of LCZs refers only to a specific range of horizontal length scales (i.e. 

hundreds of meters to several kilometers), there is not an optimal resolution to conduct the 

pixel-based classification. Nevertheless, mapping fine-resolution LCZ maps requires utilizing 

relatively higher resolution input data (Bechtel et al., 2015). In this study, we used Landsat 8 

satellite imagery, acquired for a summer day during daytime (15/08/2018 10:10 AM), and where 

the cloud cover over the region of interest (ROI) was less than 10%. In particular, Landsat 8 

Urban units Built features Urban climate phenomena 
Typical 

horizontal scale 

Climate 

scale 

     

Facet Roof, wall, road 
Shadows, storage heat flux, dew and frost 

patterns  
10 x 10 m Micro 

Element 
Residential building, 

high-rise warehouse 
Wake, stack plume 10 x 10 m Micro 

Canyon Street, canyon 
Cross-street shading, canyon vortex, 

pedestrian bioclimate, courtyard climate 
30 x 200 m Micro 

Block City block, factory Climate of park, factory cumulus 0.5 x 0.5 Km Local 

Neighborhood 
City center, quarter, 

industrial zone 

Local neighborhood climates, local 

breezes, air pollution district 
2 x 2 Km Local 

City Built-up area 
Urban heat island, smog dome, patterns 

of urban effects on humidity, wind 
25 x 25 Km Meso 

Urban region 
City plus surrounding 

countryside 

Urban ‘plume’, cloud and precipitation 

anomalies 
100 x 100 Km Meso 
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(launched on February 2013) carries two sensors, i.e. the Operational Land Imager (OLI) and 

the Thermal Infrared Sensor (TIR), which collect optical and thermal data at a spatial resolution 

of 30 m images, ranging from visible to near infrared (NIR), and shortwave infrared (SWIR); 100 

m thermal images, which are resampled at 30 m to match the multispectral bands; and 15 m 

panchromatic images (USGS, 2015), as reported in Table 2.  

 

Also, high quality digital topographic database (DTDB) of building footprints, where building 

heights information is available, was obtained from Geoportale Lombardia. The DTDB is freely 

available for most of the Lombardy municipalities and comes in different scales, i.e. 1:2,000 for 

urban centers; 1:5,000 for the extra urban areas; and 1:10,000 for mountain or non-urbanized 

areas. 

 

Table 2. Landsat 8 band designations 
 

Bands Wavelength (micrometers) Resolution (meters) 

   

Band 1 – Coastal aerosol 0.43 – 0.45 30 

Band 2 – Blue 0.45 – 0.51 30 

Band 3 – Green 0.53 – 0.59 30 

Band 4 – Red 0.64 – 0.67 30 

Band 5 – Near Infrared (NIR) 0.85 – 0.88 30 

Band 6 – SWIR 1 1.57 – 1.65 30 

Band 7 – SWIR 2 2.11 – 2.29 30 

Band 8 – Panchromatic 0.50 – 0.68 15 

Band 9 – Cirrus 1.36 – 1.38 30 

Band 10 – Thermal Infrared (TIRS) 1  10.60 – 11.19 100 

Band 11 – Thermal Infrared (TIRS) 2  11.5 – 12.51 100 

   

Source: (USGS, 2015, p. 9) 

 

The study area is the Metropolitan City of Milan (CMM), which includes the City of Milan and 

other 133 municipalities. It covers a surface area of about 1,575 km² and has a population of 

around 3.254 million inhabitants. According to the National Plan of Adaptation to the Climate 

Change (PNACC), the CMM is one the most vulnerable areas in Italy in respect to the risk of 

extreme heatwaves.  

 

3. Methodology 

 

3.1 Creating the LCZ classification  

 

The proposed methodology for improving the quality of the LCZ classification has four main 

steps. Firstly, Landsat 8 data were downloaded from the United States Geological Survey 

(USGS), pre-processed (i.e. calibrated and atmospherically corrected), and clipped to the ROI. 

Then, training areas were created in Google Earth for each LCZ type (Table 3), as instructed by 

WUDPAT. However, we have digitized an average smaller-sized training samples (down to 250 

m in horizontal length) for mapping a fine-scale LCZ map as well as to consider the effect of the 

small-scale urban units on the micro- and local climate (e.g. extremely big buildings, elongated 

or wide urban canyons, and urban blocks). In fact, urban blocks or urban units of about 250 m in 

horizontal scale are commonly the smallest urban units where homogeneity can be found and 

subsequently can be regarded as climate zones (Kotharkar & Bagade, 2018; Oke et al., 2017). 
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Table 3. Training samples, defined using Google Earth imagery, for the LCZ 

classification in the CMM 
 

Built types Land cover types 

      

LCZ 1 

Compact 

high-rise  

LCZ 8 

Large low-rise  

LCZ A 

Dense trees  

LCZ 2 

Compact 

mid-rise  

LCZ 9 

Sparsely built  

LCZ B 

Scattered 

trees  

LCZ 3 

Compact 

low-rise  

LCZ 10 

Heavy industry  

LCZ C 

Bush, scrub  

LCZ 4 

Open high-

rise   

 

LCZ D 

Low plants  

LCZ 5 

Open mid-

rise    

LCZ E 

Bare rock or 

paved  

LCZ 6 

Open low-

rise    

LCZ F 

Bare soil or 

sand  

LCZ 7 

Lightweight 

low-rise    

LCZ G 

Water  

      

Source: Authors based on (Stewart & Oke, 2012) 

 

Next, the physical and morphological indicators were calculated. In particular, the broadband 

albedo was calculated from Landsat 8, bands 2,4,5,6,7, using a conversion formulae (Liang, 

2001), while the NDVI was obtained by using Landsat 8, NIR and Red bands (Rouse, Hass, 

Schell, Deering, & Harlan, 1974). On the other hand, building heights and SVF were calculated 

using the DTDB and resampled consistently with the spatial resolution of Landsat 8 data (30 m).  
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Finally, a LCZ map was generated using the Random Forest classifier (Ho, 1998) in SAGA GIS 

(the Local Climate Zone Classification tool) with a number of decision trees equals 64, as 

recommended by Oshiro, Perez, and Baranauskas (2012). In fact, we created a LCZ map twice, 

first, as instructed by WUDAPT, i.e. using Landsat 8 multispectral and thermal bands, and, then, 

by using Landsat 8 multispectral bands only (physical features) combined with the 

morphological indicators. A majority filter of 4-pixel radius was applied to the output maps to 

achieve more homogenous LCZs (of about 270 m in horizontal length scale; Figure 1). 

 

Figure 1. LCZ post-filtered classification (majority filter, 4-pixel radius) for the CMM, 

using Landsat 8 multispectral bands combined with morphological indicators  
 

 
Source: Authors using the Local Climate Zone Classification tool in SAGA GIS 

 

3.2 Accuracy assessment  

 

Assessing the level of accuracy of the LCZ classification has been always challenging, since 

there is not enough, independent test data (ground truth). Furthermore, using the same training 

data for model validation and calibration is misleading. Accordingly, for instance, in the 

WUDAPT level 0 method, three approaches are usually used to assess the accuracy of the LCZ 

maps, before they are disseminated on the online platform; these are cross-validation (rotation 

estimation), manual review, and cross-comparison with other data (Bechtel et al., 2019). In this 

paper, we used the repeated holdout cross-validation approach, using different subsamples for 

25 iterations as recommended by (Bechtel et al., 2019).  

 

In particular, in the repeated holdout method, the original sample data are separated into two 

portions, i.e. for training and testing (we used half of the original training data for learning and 

the other half for testing), where, for each iteration, a different random subset of the data is 

used. Subsequently, standard accuracy measures (Bechtel et al., 2017) were calculated for 

each run of the 25 iterations, using a confusion matrix. In particular, we considered four 
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measures: the overall classification accuracy (OA) for all polygons, the Kappa coefficient 

(Cohen, 1960), the overall accuracy on built polygons only, and the producer accuracy 

calculated for each LCZ type. A further certainty measure (Bechtel et al., 2019) was used, by 

calculating how often each pixel was assigned to the most frequent LCZ type (as obtained by 

calculating the majority value of the 25 iterations).  

 

4. Results  

 

The LCZ map of the Metropolitan City of Milan, as obtained by the developed physic-

morphological model (see Figure 1), shows that the built classes cover around 24.5% of the 

total metropolitan area, compared to 75.5% of the non-built classes. In particular, the majority of 

classes are in the LCZ types B, D, 6, 10, E, and A. However, considering only the most 

urbanized area, i.e. the City of Milan, it is noted that the urban structure is mostly occupied by 

the open and the compact mid-rise LCZ built types (i.e. 5 and 2) and the land cover types of 

scattered trees and bare rock or paved (i.e. B and E).  

Table 4 and Figure 2 show the results of the accuracy assessment, based on four standard 

measures. In general, both the WUDAPT level 0 method and the developed physic-

morphological model achieved an accuracy above 50%. However, it is noticeable that there is 

an overall improvement in the classification output, using the developed model, with an OA of 

67% compared to 55% using the WUDAPT method.  

 

Similarly, the Kappa coefficient for all the testing polygons is 0.61, using the physic-

morphological model, which implies a good agreement (McHugh, 2012), compared to a 

moderate agreement of 0.47 for the WUDAPT level 0 product. Also, considering only the quality 

of the built classes, where misclassification mostly occurs, the OA on all the built polygons is 

48% compared to 33% using the WUDAPT method; however, this can be improved to 54% and 

38% respectively, by excluding the least representative classes (i.e. LCZ 3 and 9).  

 

Likewise, the output classification of the new model has a higher certainty of the results over the 

entire built domain (0.68) compared to that in WUDAPT (0.58); however, both the output maps 

have almost the same certainty over the non-built classes (0.65), as shown in Figure 3. In 

general, according to (Bechtel et al., 2019), results are considered of acceptable quality if they 

achieve a minimum average accuracy of 50%. 

 

Table 4. Accuracy measures 
 

Measure (average of 25 iterations) WUDAPT level 0 product The physic-morphological model 

   

OA for all testing polygons 55% 67% 

Kappa coefficient for all testing polygons 0.47 0.61 

OA of all built types 33% 48% 

OA of all built types (excluding LCZ 3 and 9) 38% 54% 

   

Source: Authors 
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Figure 2. Boxplots of the distribution of the accuracy measures across the 25 iterations. (a) Overall 

accuracy for all testing polygons; (b) Kappa coefficient for all testing polygons; (c) Overall 

accuracy of all built polygons; (d) Overall accuracy of all built polygons (excluding LCZ 3 and 9) 

 
Source: Authors 

 

Figure 3. Boxplots for the certainty of the results over the entire domain.  

(a) Built local climate zones; (b) Non-built local climate zones 

 
Source: Authors 

 

Further, in order to assess the impact of the proposed methodology on the accuracy of the 

individual LCZs, we have calculated the producer accuracy (%) for each LCZ type (Figure 4). 

The producer accuracy is the likelihood that a pixel in a certain class was classified correctly. In 

sum, the results show that the physic-morphological model can achieve remarkable 

improvements in seven LCZ types (i.e. LCZ 1, 5, 6, 7, 10, E, and F) and slight improvement in 

other four types (i.e. LCZ 2, 9, A, and D). However, almost no or very little improvement was 

achieved in the LCZs 4 and B. It was also reported that the WUDAPT level 0 product is 

performing slightly better in four LCZ types (i.e. LCZ 3, 8, C, and G); this can be returned to the 

presence of the thermal information that can provide further differentiation between the classes, 

since the surface permeability is negatively well correlated with land surface temperature 

(Bechtel et al., 2019; Weng, 2009; see also Weng, Lu, & Schubring, 2004). 
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Figure 4. The producer accuracy (%) for each LCZ type. (a) The WUDAPT level 0 

product; (b) The physic-morphological model 

 
Source: Authors 
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5. Discussion and conclusions 

 

In this paper, we have investigated a methodology for improving the Local Climate Zone (LCZ) 

automatic classification, in the framework of the World Urban Database and Access Portal Tools 

(WUDAPT) initiative. In particular, we have utilized medium-resolution multispectral satellite 

imagery (30 m), combining physical and morphological features of the urban environment, with 

the aim of conducting a pixel-based image classification. Further, we have digitized relatively 

small-sized training samples, using very high-resolution (VHR) aerial imagery, to generate a 

fine-scale LCZ classification, suitable for better studying the urban climate phenomena at the 

micro- and local scale (e.g. the urban heat island effect). 

 

The results of the accuracy assessment showed a noticeable improvement of the classification 

output with respect to the WUDAPT level 0 product, for both the overall accuracy (OA) and the 

Kappa coefficient by 12% and 0.14 respectively. It was also found that the OA, considering only 

the built classes, is higher by 15%, which demonstrates the effectiveness of the proposed 

approach in mapping fine-scale LCZs without additional thermal information. This also 

ascertains the physic-morphological nature of the LCZs which are intrinsically related to certain 

temperature regimes and comfort levels (Stewart & Oke, 2012). Hence, one may conclude that 

the WUDAPT level 0 method is best suitable for mapping coarse-scale LCZs (> 1 km2); 

however, mapping finer resolution LCZ maps, while maintaining a minimum average accuracy, 

requires better description of the physical and morphological features of the urban environment. 

 

On the other hand, there are still limitations in identifying some individual LCZ types, where the 

OA is less than 50% (e.g. LCZ 9, 4, C). This is mainly, either because of the size and the quality 

of the training samples, that can vary from a user to another and require further expert 

knowledge (Bechtel et al., 2015; Ren et al., 2016) or because of the non-representativeness of 

some LCZ types, considering the generalization of the original LCZ scheme. Therefore, it would 

be of interest, in future work, to evaluate the effect of using different sets of training samples 

(e.g. in terms of area, perimeter, quantity), on the OA of the output maps.  

 

Also, multi-seasonal satellite imagery and higher quality elevation models (e.g. LIDAR derived 

digital surface model) could be utilized for better reliability of the results, especially when 

classifying land cover types. Moreover, considering the universality of the LCZ classification 

scheme (Stewart & Oke, 2012; Wang et al., 2018; Wicki & Parlow, 2017) with respect to the 

heterogeneity of the internal urban structure among cities of different size and location (Bechtel 

et al., 2015), the possibility of readapting the standard LCZ scheme by describing site-specific 

LCZ types or subtypes that are related to certain micro- and local climate conditions, should be 

investigated.  
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