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Abstract 

The indoor air quality in the wheelhouse of an inland tanker was assessed through monitoring campaigns. The 

continuous-time measurements gathered data on NO2, O3, NO, CO, total volatile organic compounds (TVOC), and 

particulate matter (PM2.5). The time series exhibited irregular concentration profiles characterized by narrow and 

broader peaks atop a gradually fluctuating baseline. These peaks denote sudden environmental changes, occurring 

within specific time frames and locations, indicating moments of poorer indoor air quality. The synchrony between 

peaks of different pollutants suggests that many of the narrow pollution peaks originate from exhaust emissions. 

Previous research has indicated that exhaust gas in outdoor air could infiltrate the wheelhouse via the ventilation 

system. However, multiple factors within the ship's vicinity (e.g., nearby industries, specific manoeuvres, or passing 

vessels) could also contribute to the occurrence of pollution peaks in the wheelhouse. To explore the synchrony 

between pollution peaks in the wheelhouse and events in the surroundings of the ship, a time-lapse camera capturing 

time-stamped images of the ship's front view has been installed. Analysis of these images in conjunction with the 

simultaneous occurrence of pollution peaks as observed in time series indicates the existence of multiple pollution 

sources influencing the indoor air quality in the wheelhouse. The various sources of pollution form an interlinked 

network of hazards that collectively influence indoor air quality. Each source has the potential to induce changes 

within this network and can, to a certain extent, affect other hazards. Furthermore, non-polluting elements within this 

network also contribute significantly to the variable behaviour of the network. For example, crew decisions regarding 

navigation and manoeuvers play affect the dynamics of this network. 
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1 INTRODUCTION 

Sensor-based monitoring campaigns measuring air quality within the enclosed environment of inland ship 

wheelhouses provide a wealth of information [1,2]. They give an insight what pollutants a ship emits [3–9] and how 

they infiltrate in the wheelhouse [10,11]. However, the absence of explicit event labels poses a significant obstacle to 

understanding the underlying drivers of pollution dynamics. Besides the ship's own exhaust fumes, emissions from all 

other ships in the surroundings [12], poorer air quality in which ships operate such as harbours [13], nearby industrial 

activities, or ship operations could impact the indoor air quality as well [14–16]. One way to assess the impact of the 

ship itself on the indoor air quality is to monitor the ship’s changes in motion and orientation and check their synchrony 

with the occurrence of pollution peaks. GPS information also provides some insight into the ship's surroundings, such 

as whether it is navigating through industrial or rural areas, passing a bridge, or located at a lock. However, there are 

many other events that remain unseen. Therefore, relying solely on motion and GPS data may not capture the full 

range of factors influencing air quality. To gain deeper insight in the occurrence of events in the vicinity of the ships, 

a time-lapse camera has been installed that captures photos of the ship's front view during the air quality monitoring 

campaign. The timestamped photos have been used to identify events such as waiting next to another ship in a lock or 

performing specific operations such as bunkering a merchant ship.  

 

The indoor air quality in the wheelhouse of an inland tanker has been assessed through monitoring campaigns. The 

continuous-time measurements gathered data on NO2, O3, NO, CO, total volatile organic compounds (TVOC), 

particulate matter (PM2.5) and GPS while the time lapse camera took photos of the ship’s front view. This study aims 

to elucidate the interplay between pollution events and occurrences in the vicinity of the ship, thereby offering valuable 

insights into the broader dynamics at play. 

 

2 BACKGROUND 

An outlier, in statistical terms, refers to a data point that significantly deviates from other observations in a dataset, 

implying a different underlying condition or measurement error [17–19]. In the context of air quality monitoring 

campaigns conducted within the enclosed environment of inland ship wheelhouses, complex and dynamic patterns in 

measured environmental parameters have been revealed. These patterns often include outliers, where certain data 

points deviate substantially from the rest of the dataset. These outliers manifest as diverse short-term features, such as 

isolated peaks of varying widths, series of overlapping peaks, or valleys superimposed on a slowly fluctuating baseline. 

Moments of heightened pollutant concentrations are particularly significant as they can impact the health of the crew, 

even when air quality meets legislative standards. These features are identified when a subset of consecutive data 

points exhibits distinct properties that set them apart from neighboring data points, often marked by a significant 

increase or decrease in signal relative to the baseline.  

 

Outliers, including peaks and valleys, typically arise due to processes different from those affecting the rest of the 

data. These processes are often linked to events occurring in or around the ship. For instance, emitted exhaust gas 

tends to accumulate around the ship when the relative wind speed and direction align closely with the ship's speed and 

direction. A deeper understanding of such events could be instrumental in improving air quality within wheelhouses. 

However, while environmental monitoring campaigns offer insights into temporal trends, they often lack detailed 

information to fully explain the events driving these patterns. The limited causal information available in the time 

series often comprises signature patterns, such as the synchrony of outliers observed across different parameter time 

series, which can indicate specific sources. For example, simultaneous peaks of temperature, relative humidity, and 

CO2 levels may indicate human presence in the wheelhouse, while concurrent peaks of NO and NO2 suggest the entry 

of exhaust gas emissions through the ventilation system. 

 

The term ‘outlier’ is commonly used in data analysis. It represents sudden occurrences that take place in the data world 

and offer descriptions of what is happening (see data world in Fig. 1). ‘Events’ denote sudden occurrences that take 

place in the real world (see real world in Fig. 1). They provide insight into the reasons why something is happening. 

This contribution aims to investigate the relationship between outliers identified in air quality data and the events 

taking place in and around the ship as identified with time-lapse photography. 
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Fig. 1: Schematic representation of the difference between outlier and event and how they are related. 

 

 

2 EXPERIMENTAL 

2.1. Measuring campaign 

During the measuring campaign from 26 January to 1 February 18 March 2021, an in-house developed sensor box to 

measure various environmental parameters has been installed in the wheelhouse of an inland tanker dedicated to the 

bunkering of merchant ships. The sensor box has been described elsewhere and is able to monitor temperature, relative 

humidity, CO2, PM1, PM2.5, PM10, CO, NO2, O3, NO, H2S, SO2, and TVOC [1]. Sensors do not generate signals as 

reliable as state-of-the-art reference instruments, but they are good enough to assess air quality [20,21]. The 

concentrations of H2S and SO2 [22] are close or below the detection of the sensors (< 5 ppb) and will be omitted in 

this study. The sensor box is also able to measure GPS signals. All parameters are measured with a sampling time of 

3 minutes. The monitoring campaign results in a data matrix with measurements arranged in rows and parameters 

arranged in columns. The first column entails the timestamp. The collected data matrix contains 2823 

rows/measurements.  

 

The installation of a time-lapse camera on the front window using a suction cup mount allowed the continuous visual 

record during the air quality monitoring campaign. This resulted in a dataset of 7,807 photos, each taken at one-minute 

intervals. The organization of this dataset is meticulously structured, with each photo's filename embedding the 

timestamp of its capture. This naming convention facilitates a seamless chronological analysis of the data collected, 

enabling an intricate visual timeline that complements the air quality measurements. 

 

 

2.2. Data processing of the air quality data 

The collected air quality data undergoes a preprocessing stage as the first step in its analysis. This data preparation 

phase comprises several steps: inserting missing rows, filling absent data via linear interpolation, identifying erroneous 

data and replacing them through linear interpolation, correcting inconsistencies by replacing values outside an 

acceptable range with interpolated estimates, and smoothing out noise. Microsoft Excel is employed to both introduce 

missing rows and bridge gaps in data through linear interpolation. Then, noise has been suppressed by applying a 

central moving average using a span of 5 data points.  

 

A variety of methods exists to identify outliers. However, there is no universal recipe and the data analyst must choose 

the right approach [23]. Due to a lack of prior information about the characteristics of the data and the type of outliers, 

outlier detection has been done manually. However, it should be possible to perform this task using an algorithm [4]. 

For the manual peak identification, the time series data are graphically represented to facilitate visual identification of 

peaks. Overlapping peaks characterized by several local maxima are considered a single entity to maintain clarity in 

the analysis. For every identified peak or series of overlapping peaks with several local maxima, the corresponding 
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data points in the matrix are marked in red, and the maximum of the outlier is emphasized in bold. After the 

identification of an outlier, a comprehensive summary is compiled in a new matrix, detailing the start and end 

timestamps of each outlier, the timestamp of the maximum value, the type of pollutant involved, the outlier's maximum 

value, the corresponding z-score, and the GPS coordinates at which the maximum value occurred. A similar approach 

is employed for identifying valleys, with the primary difference being the focus shifted towards the minimum value 

of the outlier. Through this approach as visualized in Fig. 2a, peaks within the time series are meticulously described 

by a fixed series of features arranged in a matrix format. These features are: 

 

• Timestamp Start Outlier: This moment marks the initial moment when a deviation from the baseline is 

noticed. Identifying this point can be challenging, especially if the deviation (peak or valley) develops 

gradually over time, making it less distinct; 

• Timestamp Maximum or Minimum Value of the Outlier: This timestamp precisely identifies when an 

outlier reaches its highest value (peak) or lowest value (valley) within the observed range. It marks the 

moment of maximum deviation from the baseline. In cases where multiple moments share the same 

maximum value, the first data point is selected; 

• Timestamp End Outlier: This timestamp indicates when the data returns to values similar to the baseline, 

signifying the end of the outlier. The data points within the start and end timestamps of the outlier in the data 

matrix are highlighted in red; 

• Duration: Represents the total time expressed in minutes from the start to the end of the outlier. This metric 

quantifies the length of the deviation period; 

• Parameter: Refers to the specific environmental parameter (e.g., PM2.5, NO2 levels) for which a deviation 

(peak or valley) is observed; 

• Shape: Describes the overall appearance of the outlier in the time series data. It can be a single peak or valley 

with one maximum or minimum point, or a complex pattern featuring a series of overlapping peaks or valleys; 

• Maximum or Minimum Value in the Range: The highest (for peaks) or lowest (for valleys) recorded value 

of the outlier, as measured by one of the monitoring sensors during the outlier. 

• Corresponding Z-Score of the Minimum or Maximum Value: The Z-score associated with the peak or 

valley value, indicating how many standard deviations a peak maximum or valley minimum deviates from 

the mean. This statistic helps assess the outlier's intensity relative to the normal data distribution. 

• GPS Latitude of the Maximum/Minimum Value: The geographical latitude where the maximum or 

minimum value was recorded, providing spatial context to the outlier outlier. 

• GPS Longitude of the Maximum/Minimum Value: Similarly, this is the geographical longitude where the 

peak or valley occurred, further pinpointing the location of the deviation. 
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Fig. 2: Visual representation of the methods used to extract distinctive features about events observed in time series and in series of photos. 

 

 

 

2.3. Data processing of the time-lapse photos 

Throughout the day, the time-lapse photos offer a clear view of the ship's environment. At night, artificial illumination 

often ensures visibility to detect nearby occurrences. Yet, as the ship navigates the Scheldt River during nighttime, 

the darkness becomes too profound for the camera to capture useful images.  

 

The analysis of the time-lapse imagery is conducted using two distinct methods. The initial technique pinpoints 

specific instances where notable events occur, such as the ship docking at a quay, waiting inside a lock, encountering 

close passage with another vessel, experiencing rainfall (evidenced by droplets on the window), or engaging in fuel 

transactions with merchant ships. By analyzing changes in visual cues or anomalies in the sequence of images, 

numerous events are identified. Some of the events might coincide. It is noteworthy that the maxima of pollution peaks 

may not coincide with any identified event or might intersect with several concurrent events. 

 

An alternative method splits the photo series into distinct segments by detecting change points. Change points 

represent marked alterations in the dynamics of the series [24,25]. Change points used in this study are transitions 

between movement and stationary phases. In the segmentation approach, every peak or cluster of peaks in the air 

quality data aligns distinctly within one of the delineated segments. 

 

Although the two methods diverge in their approach, the resultant moments are characterized using a consistent set of 

attributes. The collated and condensed findings are detailed in a table, incorporating features such as: 

 

• Timestamp start event: This timestamp marks the initial moment of a notable occurrence or situation in or 

around the ship; 

• Timestamp end event: This timestamp indicates when the salient activity or situation ends; 

• Duration: Represents the total time measured in minutes from the start to the end of the event. This metric 

quantifies the length of the period; 

• Status of Ship: Described by the binary variable 'Sailing' or 'Standing still', indicating the ship's activity; 

• Surroundings: Categorizes the events into one of the following broad categories: 'Harbour', 'Canal', and 

'Open water'; 

• Event Description: Describes the activity identified in the series of photos within the marked event using 

words. 
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3 RESULTS 

Fig. 2 illustrates the dynamic patterns present in the time series of temperature, relative humidity, and CO2, displaying 

their relationship with the ship's position. Within these time series, numerous peaks are observed atop a slowly 

fluctuating baseline. From the extracted features, the six peaks with the highest z-score have been identified and 

ranked. These peaks are numbered from highest to lowest significance and shown in Fig. 2. Some moments are 

characterized by a single and isolated peak with a single maximum (e.g., peak 5), while others display a series of 

overlapping peaks with multiple local maxima (e.g., peak 3). Peaks exhibiting shoulders are challenging to classify in 

the binary classification as 'single peaks' or 'series of peaks' because they may consist of several peaks that are hard to 

resolve. The synchrony between CO2, relative humidity (RH), and temperature (T) is indicative of human presence in 

the wheelhouse. Peak height relative to the baseline is at many occasion highest for CO2, followed by relative 

humidity, while temperature fluctuations are more subtle. During periods of changing ship positions over time (e.g., 

blue rectangles in Fig. 2), higher CO2 and RH levels are observed in the wheelhouse, reflecting the presence of the 

crew required to operate the ship. It should be remarked that warm and humid exhaust gas also contains CO2 and that 

this synchrony can be explained differently. 

 

 
Fig. 2: Temperature, relative humidity and CO2 measurements in the wheelhouse over time. 

 

 

A total of 67 peaks in temperature (T), relative humidity (RH), and carbon dioxide (CO2) levels have been identified. 

The six most significant peaks, indicated by their highest z-scores, are illustrated in Fig. 2 and detailed in Table I. 

Table I shows that it is possible to describe the peaks shown in Fig. 2 with several properties organized in a table. In 

The time-lapse photos and GPS-data give an insight about the surroundings of the ship. Upon comparing the peak 

maxima with the segments in which the maximum value falls, it is observed that 6 peaks occur at the beginning of the 

segment, while 10 occur at the end of the segment. This suggests occasional synchrony between environmental peaks 

and the change points. The change points used in this study are transitions between the ship moving and the ship 

standing still. Such transition require more maneuvers. When considering all kinds of events including the ones 

occurring tin the surroundings of the ship, the peak maxima do not consistently align with periods when events occur, 

although there may be partial overlap between the periods where peaks and events occur. Consequently, not all peaks 

could be attributed to an event. The comparison with events did not yield significant additional information. 
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TABLE I: Description of the 6 most important peaks for T, RH and CO2 according to the extracted features and the 

features of the segment in which the peak maximum resides.  
Feature 1 2 3 4 5 6 

Features from peaks identified in monitoring campaign 

Timestamp start 26/01/’21 12:08 28/01/’21 08:16 28/01/’21 13:05 29/01/’21 14:07 01/02/’21 02:40 31/01/’21 13:52 

Timestamp maximum 26/01/’21 15:02 28/01/’21 10:07 28/01/’21 14:26 29/01/’21 16:04 01/02/’21 08:29 31/01/’21 20:36 

Timestamp end 26/01/’21 16:41 28/01/’21 10:35 28/01/’21 18:09 29/01/’21 16:25 01/02/’21 08:41 31/01/’21 21:21 

Duration [in minutes] 272.95 138.45 303.97 138.45 361.20 448.46 

Parameter T RH RH T CO2 CO2 

Shape Series of peaks Series of peaks Series of peaks Single peak Single peak Series of peaks 

Maximum value 28.97 52.04 51.04 28.49 2636.80 2511.60 

Corresponding z-score 2.81 2.71 2.51 2.48 2.42 2.21 

GPS latitude 51.27413 51.35521 51.31039 51.32165 51.26689 51.32649 

GPS longitude 4.343061 3.176239 3.206757 3.210866 4.371531 4.307178 

Features from the corresponding segment as identified with time-lapse photography 

Timestamp start 26/01/’21 11:25 28/01/’21 06:16 28/01/2021 13:50 29/01/2021 13:01 01/02/2021 03:09 31/01/2021 20:23 

Timestamp end 26/01/’21 15:13 28/01/’21 12:54 28/01/2021 15:04 30/01/2021 05:48 01/02/2021 09:34 31/01/2021 21:17 

Duration [in minutes] 227.9 397.9 74.3 1007.5 385.7 54.2 

Time between peak 

maximum and beginning of 

segment [in minutes] 

216.9 231.8 35.9 183.0 319.9 12.7 

Time between end of 

segment and peak 

maximum [in minutes] 

11.0 166.1 38.3 824.5 65.8 41.5 

Status ship Standing still Standing still Sailing Standing still Standing still Sailing 

Surroundings Harbour Harbour Canal Harbour Harbour Harbour 

Event description 

Ship is at the quay 

in the port of 

Antwerp 

Ship is delivering 

fuel to a merchant 

ship in Bruges-on-

Sea (it is raining) 

Ship sails in the 

docks of Bruges-

on-Sea and there is 

a bridge in front 

Ship is at the 

quay behind 

another inland 

ship in Bruges-

on-Sea 

Ship is at the 

quay next to an 

inland tanker in 

the port of 

Antwerp 

Ship sails in the 

docks of the port 

of Antwerp 

 

Figure 3 demonstrates the variations over time in pollutant concentrations caused by the combustion of fuel in the 

engine's cylinders when there is a lack of oxygen, caused by a departure from the optimal air-to-fuel ratio. In such 

scenarios, combustion leads to the formation of partially oxidized carbon, resulting in the emission of CO, TVOC, 

and PM. It is important to note that TVOC emissions may also originate from the cargo of the inland tanker, which 

can be released during the periods of bunkering. For this category of pollutants, the 6 most important peaks have been 

identified using the z-score, ranked according to its importance, and numbered. The numbered peaks are shown in 

Fig. 3. Besides the 6 most important peaks, the time series contains many more peaks. Instances of combustion with 

inadequate air supply are observed to occur regularly during the journey, as shown in Figure 3. In total, 91 moments 

with peaks have been identified. The extracted features also allow for the calculation of the total exposure time of all 

PM10 peaks, which accounts for 71% of the total period of the measurement campaign. For PM1, PM2.5, CO, and 

TVOC, this exposure time is 58%, 57%, 39%, and 35% respectively. Although the pollution peaks remain below 

imposed thresholds, the impact of such pollution peaks on human health cannot be neglected. Additionally, the sensor 

box detects synchronous occurrences of peaks, such as between CO and TVOC (e.g., peak 4 and 5) or between CO, 

TVOC, and PM (e.g., peak 3 and 6). 

 

While GPS information provides insight into whether the ship is moving or stationary, it does not elucidate why 

pollution peaks occur. Through segmentation of the journey using time-lapse photography, it is observed that 33% of 

the peaks fall within segments when the ship is sailing, 31% during bunkering activities, 33% when the ship is waiting 

at the quay, and 3% during waiting in a lock (see Table II). However, this distribution is not substantially different 

from that observed for pollutants such as NO, NO2, and O3. 

 

The widths of the six most important peaks range from 90 minutes (PM10 peak 2) to 1200 minutes (PM2.5 peak 1) at 

the baseline, suggesting that they are unlikely to be caused by passing ships, which typically take less than 5 minutes 

to pass. The most significant peak, nr. 1, occurs during a bunkering operation, while peak number 2 is observed when 

the ship is docked at a quay. For the other peaks, the ship is sailing. There appears to be no clear synchrony between 

the peaks of pollutants and the segments of the journey. This suggests that additional contextual information is required 

to explain the occurrence of these peaks. 
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Fig. 3: Time series plots of pollutants formed in a low-oxygen environment and the 6 most important peaks.  

 

Fig. 4 illustrates the time-series dynamics of pollutants generated when fuel is burned in the engine’s cylinders in an 

excess of oxygen gas. Among the monitored pollutants in this category are NO, NO2, and O3. These time series 

encompass 41 moments with peaks. Although these peaks exhibit widths at the baseline ranging from 20 to 1000 

minutes, their potential impact on human health cannot be dismissed, as the total exposure of NO2, O3, and NO peaks 

constitutes 41%, 33%, and 19% of the total measuring campaign, respectively. However, the exposure times are 

somewhat lower compared to the pollutants shown in Fig. 3. The blue squares in Fig. 4 indicate the synchrony between 

NO and NO2 while the ship is sailing. 

 
Fig. 4: Time series plots of pollutants formed in an excess of air and the 6 most important peaks. 

 

Table II gives a classification of the NO, NO2 and O3 peaks according to the status and activity of the ship. Of all these 

peaks, 37% corresponds with segments when the ship is sailing, 37% when the ship is bunkering, and 27% when the 
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ship is waiting at a quay (see Table II). None of the peaks could be associated with a segment where the ship is waiting 

inside a lock. The same classification has been performed for the CO, TVOC and PM-peaks. Table II does not show 

an obvious difference between the two categories of pollutants.  

 
TABLE II: Percentage of peaks that can be associated to specific segment types of the journey. 

Segment type NO, NO2, O3 peaks CO, TVOC, PM peaks 

Sailing 37 % 32 % 

Bunkering 37%  31 % 

Waiting at a quay 27 % 33 % 

Waiting in a lock 0 % 3 % 

Total number of peaks 41 peaks 91 peaks 

 

Among the six most important peaks for the category of pollutants shown in Fig. 5, the first four occur while sailing 

close to the shore of the North Sea. The green arrows in Fig. 5 indicate the synchrony between NO and NO2 peaks. 

Peak nr. 1 is observed as the ship sails approximately 5 km off the North Sea coast near Bruges-on-Sea. Two merchant 

ships can be seen on the images at portside at around 15:27 at some distance. Although night images provide limited 

details, GPS data offers clues to the ship's location. The O3 peak nr. 5 happens as the ship is alongside another merchant 

vessel during a fueling operation. The NO2 peak nr. 6 arises shortly after completing fuel delivery to a merchant ship, 

as it maneuvers backwards to dock at the quay behind that merchant ship and begins refueling from trucks. Although 

some peaks are close to the beginning of the segment (i.e.n peak 4), the relationship is not as apparent as for 

temperature, relative humidity, and CO2. 

 

 
Fig. 5: Time-lapse images corresponding with the moments of the maxima of the 6 peaks. 

 

 

4 CONCLUSIONS 

The examination of dynamic patterns within the time series data revealed a plethora of short-term features, including 

isolated peaks, series of overlapping peaks, and valleys atop fluctuating baselines. These features, often denoted as 

outliers, signify sudden deviations in pollutant concentrations and underscore the complex nature of pollution 

dynamics within the wheelhouses. Further exploration focused on categorizing and understanding the origins of these 

outliers. It was discerned that peaks in pollutants might arise from various sources, including the ship's own exhaust 

emissions, passing ships, nearby industrial activities, or specific ship-related operations such as bunkering. 

Additionally, the analysis unveiled sporadic synchrony between environmental peaks and change points, suggesting 

temporary relationships between pollution events and ship activities. Notably, the integration of time-lapse 

photography provided valuable contextual information, aiding in the identification of events occurring in the vicinity 

of the ship. By juxtaposing pollutant peaks with these events, insights into potential causative factors have been gained. 

However, despite these efforts, a clear synchrony between pollutant peaks and journey segments is not evident, 

indicating the need for further contextual elucidation. In conclusion, this study underscores the multifaceted nature of 
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pollution dynamics within inland ship wheelhouses and highlights the importance of incorporating diverse data 

sources and analytical techniques to unravel the complex interplay between environmental factors and ship-related 

activities. Moving forward, a deeper understanding of these dynamics will be essential for devising effective strategies 

to mitigate pollution and safeguard the health and well-being of ship crews and the environment. 
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